from astropy.cosmology import Planck18, z_at_value, FlatLambdaCDM
import astropy.units as u
import matplotlib.pyplot as plt
import pandas as pd
import numpy as np
from astropy.constants import k_B
from scipy.integrate import quad
%matplotlib widget
Particles Mass spin color g
Photon (γ) 0 2 1 2 W+,W− 80.4GeV 3 1 6 Z 91.2GeV 3 1 3 Gluon (g) 0 2 8 16 Higgs boson >114GeV 1 1 1
Bosons 28
u,/,u¯ 3MeV 2 3 12 d,/,d¯ 6MeV 2 3 12 s,/,s¯ 100MeV 2 3 12 c,/,c¯ 1.2GeV 2 3 12 b,/,b¯ 4.2GeV 2 3 12 t,/,t¯ 175GeV 2 3 12 e+,e− 0.511MeV 2 1 4 μ+,μ− 105.7MeV 2 1 4 τ+,τ− 1.777GeV 2 1 4 νe,νe¯ <3eV 1 1 2 νμ,νμ¯ <0.19MeV 1 1 2 ντ,ντ¯ <18.2MeV 1 1 2
Fermions 90
t = """Particles Type\tMass spin color g\tQCD
γ boson\t 0 2 1 2\tFalse
W+,W− boson\t 80.4GeV 3 1 6\tFalse
Z boson\t 91.2GeV 3 1 3\tFalse
Gluons boson\t 0 2 8 16\tTrue
Higgs boson\t 125.3GeV 1 1 1\tFalse
u,u¯ fermion\t 2MeV 2 3 12\tTrue
d,d¯ fermion\t 5MeV 2 3 12\tTrue
s,s¯ fermion\t 100MeV 2 3 12\tTrue
c,c¯ fermion\t 1GeV 2 3 12\tTrue
b,b¯ fermion\t 4GeV 2 3 12\tTrue
t,t¯ fermion\t 173GeV 2 3 12\tTrue
e+,e− fermion\t 0.511MeV 2 1 4\tFalse
μ+,μ− fermion\t 105.7MeV 2 1 4\tFalse
τ+,τ− fermion\t 1.777GeV 2 1 4\tFalse
pions boson\t 135MeV 1 1 3\tFalse
νe,νe¯ fermion\t <3eV 1 1 2\tFalse
νμ,νμ¯ fermion\t <0.19MeV 1 1 2\tFalse
ντ,ντ¯ fermion\t <18.2MeV 1 1 2\tFalse
"""
with open("particle_g.csv", 'w') as f:
f.write(t)
df = pd.read_csv("particle_g.csv", delimiter="\t")
df
Loading...
mass_txt = df["Mass"]
mass_MeV = []
for m in mass_txt:
if "eV" in m:
if "<" in m:
mass_MeV.append(0)
elif "GeV" in m:
mass_MeV.append(float(m.split('GeV')[0])*1e3)
elif "MeV" in m:
mass_MeV.append(float(m.split('MeV')[0]))
else:
mass_MeV.append(float(m))
mass_MeV = np.array(mass_MeV)
mass_T = mass_MeV / 1.38e-23 * 1.6e-19 * 1e6
a = 2.725 / mass_T
z = 1/a - 1
z[z < 0] = np.inf
/var/folders/jk/kyldbk_95pl2fc_t8qb_l8580000gw/T/ipykernel_36921/1147251717.py:1: RuntimeWarning: divide by zero encountered in divide
a = 2.725 / mass_T
T0 = Planck18.Tcmb0 # K
cosmo = FlatLambdaCDM(H0=Planck18.H0, Om0=Planck18.Om0, Tcmb0=T0, m_nu=0)
Omegar0 = cosmo.Ogamma0 + cosmo.Onu0 # with massless neutrinos
Omegar0
9.131600127112836e-05
invH0 = (1/Planck18.H0).to(u.s).value
invH0
4.560563969097498e+17
def inv_aH(a):
return (invH0/(a*(np.sqrt(Omegar0 / a**4))))
def a_to_time(a):
return quad(inv_aH, 0, a)[0]
def T_to_time(T):
return a_to_time(T0.to(u.K).value / T)
def T_to_MeV(T):
return T * 1.38e-23 / (1.6e-19 * 1e6)
def MeV_to_time(MeV):
T = MeV / 1.38e-23 * 1.6e-19 * 1e6
return T_to_time(T)
MeV_to_time(150)
5.860614772784434e-05
t = [MeV_to_time(mass_MeV[k]) for k in range(len(mass_MeV))]
/var/folders/jk/kyldbk_95pl2fc_t8qb_l8580000gw/T/ipykernel_36921/1109799512.py:8: RuntimeWarning: divide by zero encountered in scalar divide
return a_to_time(T0.to(u.K).value / T)
/var/folders/jk/kyldbk_95pl2fc_t8qb_l8580000gw/T/ipykernel_36921/1109799512.py:5: IntegrationWarning: The integral is probably divergent, or slowly convergent.
return quad(inv_aH, 0, a)[0]
df["MeV"] = mass_MeV
df["a"] = a
df["z"] = z
df["t"] = t
df.sort_values("MeV")
Loading...
def gs_tot(MeV, entropy=False):
if MeV > 150:
gb = np.sum(df["g"][(df["MeV"] < MeV) & (df["Type"]=="boson") & (df["Particles"]!="pions")])
gf = np.sum(df["g"][(df["MeV"] < MeV) & (df["Type"]=="fermion")])
elif MeV < 150 and MeV >= 0.511: # QCD phase transition
gb = np.sum(df["g"][(df["MeV"] < MeV) & (df["Type"]=="boson") & (df["QCD"]==False)])
gf = np.sum(df["g"][(df["MeV"] < MeV) & (df["Type"]=="fermion") & (df["QCD"]==False)])
elif MeV < 0.511: # e+/e- annihilation
gb = 2
if not entropy:
gf = 2 * 3 * (4/11)**(4/3) # neutrinos at lower T
else:
gf = 2 * 3 * (4/11)
return gb + 7/8 * gf
gs_tot(1e6)
106.75
MeVs = np.sort(np.concatenate([np.logspace(-2, 7, 1000), df["MeV"]]))
ts = [MeV_to_time(MeV) for MeV in MeVs]
gs = [gs_tot(MeV) for MeV in MeVs]
/var/folders/jk/kyldbk_95pl2fc_t8qb_l8580000gw/T/ipykernel_36921/1109799512.py:8: RuntimeWarning: divide by zero encountered in scalar divide
return a_to_time(T0.to(u.K).value / T)
/var/folders/jk/kyldbk_95pl2fc_t8qb_l8580000gw/T/ipykernel_36921/1109799512.py:5: IntegrationWarning: The integral is probably divergent, or slowly convergent.
return quad(inv_aH, 0, a)[0]
fig = plt.figure()
plt.plot(MeVs, gs)
plt.grid()
plt.xscale("log")
plt.xlim((1e6, 1e-1))
ax1 = plt.gca()
#ax1.invert_xaxis()
ax2 = plt.gca().twiny()
ax2.set_xscale("log")
ticks = ax1.get_xticks()[::-1][1:-1]
ticks = ticks[(ticks>=MeVs.min()) & (ticks<=MeVs.max())]
#print(ticks)
#ticks = 10.**np.arange(6, -3, -1)
#print(ticks)
new_ticks = [MeV_to_time(tick) for tick in ticks]
#print(new_ticks)
ax2.set_xticks(new_ticks)
ax2.set_xticklabels([f"{tick:.0g}" for tick in new_ticks])
ax2.set_xlabel("$t$ [s]", fontsize=16)
ax1.set_ylabel("$g_*(T)$", fontsize=16)
ax1.set_xlabel("$T$ [MeV]", fontsize=16)
fig.tight_layout()
plt.show()
Loading...
def T_precise(a):
T_tmp = T0 / a
gs0 = gs_tot(T_to_MeV(T0).value, entropy=True)
for k in range(10):
T_tmp = T0 * (gs0/gs_tot(T_to_MeV(T_tmp).value, entropy=True))**(1/3) / a
return T_tmp
T_precise(a=1e-5)
Loading...
a = np.logspace(-14, -8, 100)
Ts = [T_precise(aa).value for aa in a]
fig = plt.figure()
ax1 = plt.gca()
ax1.plot(a, [T_to_MeV(t) for t in Ts], label="$T(a, g_{\star S})$")
ax1.plot(a, [T_to_MeV(T0.value/aa) for aa in a], 'k--', label=r"$T_0\times (a_0/a)$")
ax1.grid()
ax1.set_xscale("log")
ax1.set_yscale("log")
ax1.set_xlim(a.min(), a.max())
ax1.legend(fontsize=14)
#ax1.invert_xaxis()
ax2 = plt.gca().twiny()
ax2.set_xscale("log")
ticks = ax1.get_xticks()[::-1]
ticks = ticks[(ticks>=a.min()) & (ticks<=a.max())]
#print(ticks)
#ticks = 10.**np.arange(6, -3, -1)
#print(ticks)
new_ticks = [a_to_time(tick) for tick in ticks]
#print(new_ticks)
ax2.set_xticks(new_ticks)
ax2.set_xticklabels([f"{tick:.2g}" for tick in new_ticks])
ax1.set_xlabel("$a/a_0$", fontsize=16)
ax1.set_ylabel("$T$ [MeV]", fontsize=16)
ax2.set_xlabel("$t$ [s]", fontsize=16)
fig.tight_layout()
plt.show()
Loading...
T_to_MeV(1.8e10)
1.5525000000000002